Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.581
Filtrar
1.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658677

RESUMO

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Assuntos
Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Indóis , Neoplasias Pulmonares , Mutação , Pirimidinas , Fatores de Transcrição , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Gefitinibe/farmacologia , Via de Sinalização Hippo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas
2.
BMC Med ; 22(1): 174, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658988

RESUMO

BACKGROUND: Osimertinib has become standard care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC) patients whereas drug resistance remains inevitable. Now we recognize that the interactions between the tumor and the tumor microenvironment (TME) also account for drug resistance. Therefore, we provide a new sight into post-osimertinib management, focusing on the alteration of TME. METHODS: We conducted a retrospective study on the prognosis of different treatments after osimertinib resistance. Next, we carried out in vivo experiment to validate our findings using a humanized mouse model. Furthermore, we performed single-cell transcriptome sequencing (scRNA-seq) of tumor tissue from the above treatment groups to explore the mechanisms of TME changes. RESULTS: Totally 111 advanced NSCLC patients have been enrolled in the retrospective study. The median PFS was 9.84 months (95% CI 7.0-12.6 months) in the osimertinib plus anti-angiogenesis group, significantly longer than chemotherapy (P = 0.012) and osimertinib (P = 0.003). The median OS was 16.79 months (95% CI 14.97-18.61 months) in the osimertinib plus anti-angiogenesis group, significantly better than chemotherapy (P = 0.026), the chemotherapy plus osimertinib (P = 0.021), and the chemotherapy plus immunotherapy (P = 0.006). The efficacy of osimertinib plus anlotinib in the osimertinib-resistant engraft tumors (R-O+A) group was significantly more potent than the osimertinib (R-O) group (P<0.05) in vitro. The combinational therapy could significantly increase the infiltration of CD4+ T cells (P<0.05), CD25+CD4+ T cells (P<0.001), and PD-1+CD8+ T cells (P<0.05) compared to osimertinib. ScRNA-seq demonstrated that the number of CD8+ T and proliferation T cells increased, and TAM.mo was downregulated in the R-O+A group compared to the R-O group. Subtype study of T cells explained that the changes caused by combination treatment were mainly related to cytotoxic T cells. Subtype study of macrophages showed that proportion and functional changes in IL-1ß.mo and CCL18.mo might be responsible for rescue osimertinib resistance by combination therapy. CONCLUSIONS: In conclusion, osimertinib plus anlotinib could improve the prognosis of patients with a progressed disease on second-line osimertinib treatment, which may ascribe to increased T cell infiltration and TAM remodeling via VEGF-VEGFR blockage.


Assuntos
Acrilamidas , Inibidores da Angiogênese , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Pirimidinas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Compostos de Anilina/uso terapêutico , Compostos de Anilina/farmacologia , Acrilamidas/uso terapêutico , Acrilamidas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Masculino , Animais , Camundongos , Pessoa de Meia-Idade , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Idoso , Microambiente Tumoral/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Adulto , Indóis/uso terapêutico , Indóis/administração & dosagem
3.
Cancer Rep (Hoboken) ; 7(4): e2075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662379

RESUMO

INTRODUCTION: Gemcitabine (GEM) is often used to treat pancreatic cancer. Many anti-cancer drugs induce cancer cell death, but some cells survive after cell cycle arrest. Such a response to DNA damage is termed cellular senescence. Certain drugs, including the Bcl-2-family inhibitor ABT-263, kill senescent cells; this is termed senolysis. In this study, we examined the therapeutic benefits of ABT-263 in GEM-induced senescence of human pancreatic cancer cells. METHODS AND RESULTS: Of four pancreatic cancer cell lines (PANC-1, AsPC-1, CFPAC-1, and PANC10.05), GEM induced senescent features in PANC-1 and AsPC-1 cells, including increases in the cell sizes and expression levels of mRNAs encoding interleukin (IL)-6/IL-8 and induction of ß-galactosidase. Successive treatment with GEM and ABT-263 triggered apoptosis in PANC-1 and AsPC-1 cells and suppressed colony formation significantly. Senolysis of GEM-induced senescent pancreatic cancer cells by ABT-263 was triggered by a Bcl-xL inhibitor, but not by a Bcl-2 inhibitor, suggesting a central role for Bcl-xL in senolysis. In a xenograft mouse model, combined treatment with GEM and ABT-737 (an ABT-263 analog exhibiting the same specificity) suppressed in vivo growth of AsPC-1 significantly. CONCLUSION: Together, our results indicate that sequential treatment with GEM and senolytic drugs effectively kill human pancreatic cancer cells.


Assuntos
Compostos de Anilina , Apoptose , Senescência Celular , Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Sulfonamidas , Ensaios Antitumorais Modelo de Xenoenxerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Senescência Celular/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Senoterapia/farmacologia
4.
Target Oncol ; 19(2): 131-134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466534

RESUMO

This is a summary of the original article ?Overall survival with osimertinib in resected EGFR-mutated NSCLC.Ë® Osimertinib blocks the activity of the epidermal growth factor receptor (EGFR) on cancer cells, causing cancer cell death and tumor shrinkage, and is an effective treatment for EGFR-mutated non-small cell lung cancer (NSCLC). The ADAURA study assessed the effects of osimertinib versus placebo in patients with EGFR-mutated (exon 19 deletion or L858R) early stage (IB-IIIA) NSCLC removed by surgery (resected). Previous results from ADAURA demonstrated that patients treated with osimertinib stayed alive and cancer-free (disease-free survival) significantly longer than patients who received placebo. Recent data showed the overall length of time patients were alive after starting treatment (overall survival). In both the primary stage II-IIIA and overall stage IB-IIIA populations, patients in the osimertinib group had a significant 51% reduction in the risk of death compared with the placebo group. The data demonstrated that osimertinib after surgery significantly improved overall survival in patients with resected, EGFR-mutated, stage IB-IIIA NSCLC.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/uso terapêutico
5.
Biofabrication ; 16(3)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38507809

RESUMO

Polyaniline (PANI) wasin-situpolymerized on nanofibrous polycaprolactone mats as cell-free antioxidant cardiac patches (CPs), providing electrical conductivity and antioxidant properties. The fabricated CPs took advantage of intrinsic and additive antioxidant properties in the presence of PANI backbone and ascorbic acid as a biocompatible dopant of PANI. The antioxidant nature of CPs may reduce the serious repercussions of oxidative stress, produced during the ischemia-reperfusion (I/R) process following myocardial infarction. The polymerization parameters were considered as aniline (60 mM, 90 mM, and 120 mM), ascorbic acid concentrations ([aniline]:[ascorbic acid] = 3:0, 3:0.5, 3:1, 3:3), and polymerization time (1 h and 3 h). Mainly, the more aniline concentrations and polymerization time, the less sheet resistance was obtained. 1,1 diphenyl-2-picrylhydrazyl (DPPH) assay confirmed the dual antioxidant properties of prepared samples. The advantage of the employedin-situpolymerization was confirmed by the de-doping/re-doping process. Non-desirable groups were excluded based on their electrical conductivity, antioxidant properties, and biocompatibility. The remained groups protected H9c2 cells against oxidative stress and hypoxia conditions. Selected CPs reduced the intracellular reactive oxygen species content and mRNA level of caspase-3 while the Bcl-2 mRNA level was improved. Also, the selected cardiac patch could attenuate the hypertrophic impact of hydrogen peroxide on H9c2 cells. Thein vivoresults of the skin flap model confirmed the CP potency to attenuate the harmful impact of I/R.


Assuntos
Antioxidantes , Nanofibras , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Nanofibras/química , Condutividade Elétrica , Compostos de Anilina/farmacologia , Compostos de Anilina/química , RNA Mensageiro
6.
Int Immunopharmacol ; 130: 111778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432147

RESUMO

OBJECTIVE: To investigate the mechanism of action of fatty acid receptors, FFAR1 and FFAR4, on ulcerative colitis (UC) through fatty acid metabolism and macrophage polarization. METHODS: Dextran sulfate sodium (DSS)-induced mouse model of UC mice was used to evaluate the efficacy of FFAR1 (GW9508) and FFAR4 (GSK137647) agonists by analyzing body weight, colon length, disease activity index (DAI), and histological scores. Real-time PCR and immunofluorescence analysis were performed to quantify the levels of fatty acid metabolizing enzymes and macrophage makers. FFA-induced lipid accumulation in RAW264.7 cells was visualized by Oil Red O staining analysis, and cells were collected to detect macrophage polarization by flow cytometry. RESULTS: The combination of GW9508 and GSK137647 significantly improved DSS-induced UC symptoms, caused recovery in colon length, and decreased histological injury. GW9508 + GSK137647 treatment upregulated the expressions of CD206, lipid oxidation enzyme (CPT-1α) and anti-inflammatory cytokines (IL-4, IL-10, IL-13) but downregulated those of CD86, lipogenic enzymes (ACC1, FASN, SCD1), and pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α). Combining the two agonists decreased FFA-induced lipid accumulation and increased CD206 expression in cell-based experiments. CONCLUSION: Activated FFAR1 and FFAR4 ameliorates DSS-induced UC by promoting fatty acid metabolism to reduce lipid accumulation and mediate M2 macrophage polarization.


Assuntos
Colite Ulcerativa , Ácidos Graxos não Esterificados , Macrófagos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Metilaminas/uso terapêutico , Camundongos Endogâmicos C57BL , Propionatos/farmacologia , Propionatos/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
7.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538744

RESUMO

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos de Anilina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Pirimidinas , Sulfonamidas , Proteína bcl-X , Humanos , Animais , Compostos de Anilina/farmacologia , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Proteína bcl-X/metabolismo , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazóis/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sinergismo Farmacológico
8.
JCI Insight ; 9(8)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483541

RESUMO

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Assuntos
Compostos de Anilina , Caprilatos , Glioblastoma , Complexo Cetoglutarato Desidrogenase , Sulfetos , Sulfonamidas , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Humanos , Animais , Camundongos , Sulfonamidas/farmacologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Ciclo do Ácido Cítrico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética
11.
Cancer Lett ; 588: 216762, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38408602

RESUMO

The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Compostos Organofosforados , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Compostos de Anilina/farmacologia , Sialiltransferases/genética
12.
Cancer Res ; 84(8): 1303-1319, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359163

RESUMO

The majority of EGFR mutant lung adenocarcinomas respond well to EGFR tyrosine kinase inhibitors (TKI). However, most of these responses are partial, with drug-tolerant residual disease remaining even at the time of maximal response. This residual disease can ultimately lead to relapses, which eventually develop in most patients. To investigate the cellular and molecular properties of residual tumor cells in vivo, we leveraged patient-derived xenograft (PDX) models of EGFR mutant lung cancer. Subcutaneous EGFR mutant PDXs were treated with the third-generation TKI osimertinib until maximal tumor regression. Residual tissue inevitably harbored tumor cells that were transcriptionally distinct from bulk pretreatment tumor. Single-cell transcriptional profiling provided evidence of cells matching the profiles of drug-tolerant cells present in the pretreatment tumor. In one of the PDXs analyzed, osimertinib treatment caused dramatic transcriptomic changes that featured upregulation of the neuroendocrine lineage transcription factor ASCL1. Mechanistically, ASCL1 conferred drug tolerance by initiating an epithelial-to-mesenchymal gene-expression program in permissive cellular contexts. This study reveals fundamental insights into the biology of drug tolerance, the plasticity of cells through TKI treatment, and why specific phenotypes are observed only in certain tumors. SIGNIFICANCE: Analysis of residual disease following tyrosine kinase inhibitor treatment identified heterogeneous and context-specific mechanisms of drug tolerance in lung cancer that could lead to the development of strategies to forestall drug resistance. See related commentary by Rumde and Burns, p. 1188.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
13.
J Thorac Oncol ; 19(4): 650-652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340108

RESUMO

Adjuvant osimertinib represents a recent paradigm shift in the management of resected EGFR-mutated lung cancer. The optimal subsequent treatment of patients who relapse after completion of 3 years of adjuvant osimertinib is unknown. Here, we report two cases of complete response to osimertinib rechallenge after relapse from previous adjuvant osimertinib use, and a serial molecular panel exhibiting a lack of acquired resistance mechanisms. Future prospective studies are warranted to confirm the optimal treatment of patients who relapse after previous adjuvant osimertinib.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Recidiva , Mutação , Inibidores de Proteínas Quinases
15.
EMBO J ; 43(1): 14-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177313

RESUMO

Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.


Assuntos
Cálcio , Trocador de Sódio e Cálcio , Humanos , Compostos de Anilina/farmacologia , Cálcio/metabolismo , Éteres Fenílicos/farmacologia , Trocador de Sódio e Cálcio/química
16.
Chem Biol Drug Des ; 103(1): e14435, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230781

RESUMO

Formononetin is one of the main isoflavone components, which has strong anti-cancer effects in non-small cell lung cancer (NSCLC). However, the potentials and the mechanisms of Formononetin to counteract the Osimertinib resistance in NSCLC are unclear. In this study, Formononetin-induced cell apoptosis, cell proliferation, and clonal formation were detected in Osimertinib-resistant NSCLC cells (H1975_OR). RNA sequencing analysis was conducted to study the gene expression profiles of Formononetin-induced H1975_OR cells. The results indicated that Formononetin could significantly induce cell apoptosis, whereas dramatically inhibited cell proliferation and clonal formation on H1975_OR cells. Furthermore, a total of 4309 differentially expressed genes (DEGs) between Formononetin-treated and nontreated H1975_OR cells were had been detected. Gene Ontology (GO) annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the Gene Set Enrichment Analysis (GSEA) showed that Formononetin affected the expression of genes involving in anatomical structure morphogenesis, anatomical structure development, and multicellular organism development via regulating inflammation- and metabolism-related signaling pathways. Taken together, our study preliminarily revealed the mechanisms of Formononetin to counteract the Osimertinib resistance in NSCLC cells from the transcriptional level and provided a potential treatment method for Osimertinib-resistant NSCLC patients.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Isoflavonas , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Compostos de Anilina/farmacologia , Isoflavonas/farmacologia
17.
Comput Biol Med ; 169: 107889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199214

RESUMO

Synergetic interactions between drugs can make a drug combination more effective. Alternatively, they may allow to use lower concentrations and thus avoid toxicities or side effects that not only cause discomfort but might also reduce the overall survival. Here, we studied whether synergy exists between agents that are used for treatment of acute myeloid leukaemia (AML). Azacitidine is a demethylation agent that is used in the treatment of AML patients that are unfit for aggressive chemotherapy. An activating mutation in the FLT3 gene is common in AML patients and in the absence of specific treatment makes prognosis worse. FLT3 inhibitors may be used in such cases. We sought to determine whether combination of azacitidine with a FLT3 inhibitor (gilteritinib, quizartinib, LT-850-166, FN-1501 or FF-10101) displayed synergy or antagonism. To this end, we calculated dose-response matrices of these drug combinations from experiments in human AML cells and subsequently analysed the data using a novel consensus scoring algorithm. The results show that combinations that involved non-covalent FLT3 inhibitors, including the two clinically approved drugs gilteritinib and quizartinib were antagonistic. On the other hand combinations with the covalent inhibitor FF-10101 had some range of concentrations where synergy was observed.


Assuntos
Amidas , Compostos de Anilina , Azacitidina , Benzotiazóis , Leucemia Mieloide Aguda , Compostos de Fenilureia , Inibidores de Proteínas Quinases , Pirazinas , Pirimidinas , Humanos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
18.
Acta Biomater ; 176: 405-416, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185231

RESUMO

Cellular senescence is implicated in the occurrence and progression of multiple age-related disorders. In this context, the selective elimination of senescent cells, senolysis, has emerged as an effective therapeutic strategy. However, the heterogeneous senescent phenotype hinders the discovery of a universal and robust senescence biomarker that limits the effective of senolytic with off-target toxic effects. Therefore, the development of more selective strategies represents a promising approach to increase the specificity of senolytic therapy. In this study, we have developed an innovative nanodevice for the selective elimination of senescent cells (SCs) based on the specific enzymatic activity of the senescent secretome. The results revealed that when senescence is induced in proliferating WI-38 by ionizing radiation (IR), the cells secrete high levels of matrix metalloproteinase-3 (MMP-3). Based on this result, mesoporous silica nanoparticles (MSNs) were loaded with the senolytic navitoclax (Nav) and coated with a specific peptide which is substrate of MMP-3 (NPs(Nav)@MMP-3). Studies in cells confirmed the preferential release of cargo in IR-induced senescent cells compared to proliferating cells, depending on MMP-3 levels. Moreover, treatment with NPs(Nav)@MMP-3 induced a selective decrease in the viability of SCs as well as a protective effect on non-proliferating cells. These results demonstrate the potential use of NPs to develop enhanced senolytic therapies based on specific enzymatic activity in the senescent microenvironment, with potential clinical relevance. STATEMENT OF SIGNIFICANCE: The common ß-galactosidase activity has been exploited to develop nanoparticles for the selective elimination of senescent cells. However, the identification of new senescent biomarkers is a key factor for the development of improved strategies. In this scenario, we report for the first time the development of NPs targeting senescent cells based on specific enzymatic activity of the senescent secretome. We report a navitoclax-loaded nanodevice responsive to the matrix metalloproteinase-3 (MMP-3) associated with the senescent phenotype. Our nanosystem achieves the selective release of navitoclax in an MMP-3-dependent manner while limiting off-target effects on non-senescent cells. This opens the possibility of using nanoparticles able to detect an altered senescent environment and selectively release its content, thus enhancing the efficacy of senolytic therapies.


Assuntos
Metaloproteinase 3 da Matriz , Senoterapia , Sulfonamidas , Senescência Celular , Compostos de Anilina/farmacologia , Biomarcadores
19.
Sci Rep ; 14(1): 500, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177190

RESUMO

Osimertinib is a third-generation tyrosine kinase inhibitor clinically approved for first-line treatment of EGFR-mutant non-small cell lung cancer (NSCLC) patients. Although an impressive drug response is initially observed, in most of tumors, resistance occurs after different time and an alternative therapeutic strategy to induce regression disease is currently lacking. The hyperactivation of MEK/MAPKs, is one the most common event identified in osimertinib-resistant (OR) NSCLC cells. However, in response to selective drug pressure, the occurrence of multiple mechanisms of resistance may contribute to treatment failure. In particular, the epithelial-to-mesenchymal transition (EMT) and the impaired DNA damage repair (DDR) pathways are recognized as additional cause of resistance in NSCLC thus promoting tumor progression. Here we showed that concurrent upregulation of ITGB1 and DDR family proteins may be associated with an increase of EMT pathways and linked to both osimertinib and MEK inhibitor resistance to cell death. Furthermore, this study demonstrated the existence of an interplay between ITGB1 and DDR and highlighted, for the first time, that combined treatment of MEK inhibitor with DDRi may be relevant to downregulate ITGB1 levels and increase cell death in OR NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Linhagem Celular Tumoral
20.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257391

RESUMO

Mer and c-Met kinases, which are commonly overexpressed in various tumors, are ideal targets for the development of antitumor drugs. This study focuses on the design, synthesis, and evaluation of several 2-substituted aniline pyrimidine derivatives as highly potent dual inhibitors of Mer and c-Met kinases for effective tumor treatment. Compound 18c emerged as a standout candidate, demonstrating robust inhibitory activity against Mer and c-Met kinases, with IC50 values of 18.5 ± 2.3 nM and 33.6 ± 4.3 nM, respectively. Additionally, compound 18c displayed good antiproliferative activities on HepG2, MDA-MB-231, and HCT116 cancer cells, along with favorable safety profiles in hERG testing. Notably, it exhibited exceptional liver microsomal stability in vitro, with a half-life of 53.1 min in human liver microsome. Compound 18c also exhibited dose-dependent cytotoxicity and hindered migration of HCT116 cancer cells, as demonstrated in apoptosis and migration assays. These findings collectively suggest that compound 18c holds promise as a dual Mer/c-Met agent for cancer treatment.


Assuntos
Compostos de Anilina , Anti-Hipertensivos , Humanos , Compostos de Anilina/farmacologia , Apoptose , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...